Constitutively Active Akt1 Cooperates with KRasG12D to Accelerate In Vivo Pancreatic Tumor Onset and Progression☆☆☆
نویسندگان
چکیده
BACKGROUND AND AIMS Pancreatic adenocarcinoma is a deadly disease characterized by metastatic progression and resistance to conventional therapeutics. Mutation of KRAS is the most frequent early event in pancreatic tumor progression. AKT isoforms are frequently activated in pancreatic cancer, and reports have implicated hyperactivation of AKT1, as well as AKT2, in pancreatic tumor formation. The objective here is to delineate the role of AKT in facilitating in vivo pancreatic tumor progression in the context of KRAS mutation and predisposition to pancreatic cancer. METHODS Mice with Akt1 and KRas mutant alleles expressed using the pancreas Pdx promoter were mated to characterize the incidence and frequency of histologic and genetic alterations known to occur commonly in human pancreatic ductal adenocarcinoma. RESULTS Active Akt1 (Akt1(Myr), containing a myristoylation sequence) cooperated with active mutant KRas(G12D) to accelerate pancreatic carcinoma onset and progression and increase phosphorylation of downstream effectors in the Akt pathway. Mucin and smooth muscle actin expression was found in and around pancreatic intraepithelial neoplasms (PanINs), and accelerated time to metastasis was found in Akt1(Myr)/KRas(G12D) mice. CONCLUSIONS In contrast to prior reports of pancreatic KRas mutant mice mated with mice deficient for various tumor suppressor genes, which resulted in aggressive disease within a few months of age, Akt1(Myr)/KRas(G12D) mice enabled the study of PanINs and spontaneous pancreatic transformation more characteristic of human pancreatic progression in elderly individuals. The Akt1(Myr)/KRas(G12D) model holds promise for delineating the tumor biology and biomarkers critical for understanding their cooperation in cancer oncogenesis and future targeting in therapeutic strategies.
منابع مشابه
Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation123
Pancreatic cancers driven by KRAS mutations require additional mutations for tumor progression. The tumor suppressor FBXW7 is altered in pancreatic cancers, but its contribution to pancreatic tumorigenesis is unknown. To determine potential cooperation between Kras mutation and Fbxw7 inactivation in pancreatic tumorigenesis, we generated P48-Cre;LSL-KrasG12D;Fbxw7fl/fl (KFCfl/fl) compound mice....
متن کاملOncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice.
Pancreatic cancer is almost invariably associated with mutations in the KRAS gene, most commonly KRASG12D, that result in a dominant-active form of the KRAS GTPase. However, how KRAS mutations promote pancreatic carcinogenesis is not fully understood, and whether oncogenic KRAS is required for the maintenance of pancreatic cancer has not been established. To address these questions, we generate...
متن کاملOncogenic KRas-induced Increase in Fluid-phase Endocytosis is Dependent on N-WASP and is Required for the Formation of Pancreatic Preneoplastic Lesions
Fluid-phase endocytosis is a homeostatic process with an unknown role in tumor initiation. The driver mutation in pancreatic ductal adenocarcinoma (PDAC) is constitutively active KRasG12D, which induces neoplastic transformation of acinar cells through acinar-to-ductal metaplasia (ADM). We have previously shown that KRasG12D-induced ADM is dependent on RAC1 and EGF receptor (EGFR) by a not full...
متن کاملAcinar-to-Ductal Metaplasia Induced by Transforming Growth Factor Beta Facilitates KRASG12D-driven Pancreatic Tumorigenesis
BACKGROUND & AIMS Transforming growth factor beta (TGFβ) acts either as a tumor suppressor or as an oncogene, depending on the cellular context and time of activation. TGFβ activates the canonical SMAD pathway through its interaction with the serine/threonine kinase type I and II heterotetrameric receptors. Previous studies investigating TGFβ-mediated signaling in the pancreas relied either on ...
متن کاملYAP1 and TAZ Control Pancreatic Cancer Initiation in Mice by Direct Up-regulation of JAK–STAT3 Signaling
BACKGROUND & AIMS Pancreatitis is the most important risk factor for pancreatic ductal adenocarcinoma (PDAC). Pancreatitis predisposes to PDAC because it induces a process of acinar cell reprogramming known as acinar-to-ductal metaplasia (ADM)-a precursor of pancreatic intraepithelial neoplasia lesions that can progress to PDAC. Mutations in KRAS are found at the earliest stages of pancreatic t...
متن کامل